
 1

Real-Time and Embedded System Verification Based on Formal Requirements

B. Fontan *,**, L. Apvrille***, P. de Saqui-Sannes*,**, J.-P. Courtiat*

*LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 04, France
**ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France

*** GET/ENST, 2229 route des Crêtes, B.P. 193, 06904 Sophia-Antipolis Cedex, France
bfontan@ensica.fr ; ludovic.apvrille@telecom-paris.fr ; desaqui@ensica.fr ; courtiat@laas.fr

Abstract

TURTLE is a real-time UML profile supported by a
toolkit which enables application of formal verification
techniques to the analysis, design and deployment
phases of systems design trajectory. This paper extends
the TURTLE methodology with a requirement capture
phase. SysML requirement diagrams are introduced.
Temporal requirements (TR) are formally expressed
using a dedicated language based on Allen’s interval
algebra. TRs serve as starting point to automatically
synthesize observers and to guide the verification
process applied to the TURTLE model of the system.
Verification results are automatically collected in
traceability matrices. A Hybrid Sport Utility Vehicle
serves as example.

1. Introduction

The concept of “profile” has extensively been used to
customize the Unified Modeling Language (UML [14])
standardized by the Object Management Group. OMEGA
[10], SYNCHARTS [2] and TURTLE [3] are examples of
real-time UML profiles supported by toolkits that enable
application of formal verification techniques. These
profiles have mostly been developed outside the OMG
standardization process. They nevertheless contribute to
add formality to the OMG-based notation and they
demonstrate the power of formal verification techniques
not implemented by commercial real-time UML tools
such as TAU G2 [18] or Rhapsody [18].

This paper specifically addresses TURTLE, a real-time
UML profile based on the RT-LOTOS [6] formal
language. TURTLE is supported by TTool [20], an open-
source tool which includes a TURTLE diagrams editor
and a RT-LOTOS code generator interfaced with RTL
[16] and CADP [4]. RTL implements reachability
analysis of RT-LOTOS specifications derived from
TURTLE models. CADP is used to minimize the
reachability graphs generated by RTL.

The TURTLE methodology and toolkit enable

application of formal verification techniques to the
analysis, design and deployment phases of systems design
trajectory. In this paper, we propose to extend the
TURTLE methodology with a requirement capture phase.
SysML [17] requirement diagrams are introduced. Any
type of informal requirement may be expressed.
Nevertheless, specific attention is laid on temporal
requirements. The latter are expressed using a dedicated
language based on Allen’s intervals. An important
contribution is that we establish links between temporal
requirements and formal verification. Indeed, observers
are automatically synthesized from temporal requirements
and synchronized with the appropriated TURTLE
diagrams of the system under design. Further, verification
results are automatically collected in a traceability matrix.

The paper is organized as follows. Section 2 presents

the TURTLE profile. Section 3 explains how the
TURTLE methodology is extended to capture
requirements. Section 4 extends TURTLE with
requirement diagrams and defines a language for
temporal requirement specification. Section 5 discusses
formal verification guided by observers and outlines
‘requirement to observers’ synthesis algorithms. Section 6
discusses application of extended TURTLE to an Hybrid
Sport Utility Vehicle (HSUV). Section 7 surveys related
work. Section 8 concludes the paper.

2. TURTLE

The TURTLE profile has been designed with formal
verification in mind. Both analysis and design diagrams
may be translated into RT-LOTOS so as to reuse already
existing verification tools [16] [4] for the profit of
TURTLE. This section briefly presents analysis and
design diagrams. Then it explains the verification
approach that may be applied to either category of
diagrams.

 2

2.1. Analysis diagrams

The designer builds up one use-case diagram and one
Interaction Overview Diagram (IOD) which structures a
set of scenarios expressed as Sequence diagrams (SD). A
TURTLE IOD makes it possible to express that one
scenario (SD) may interrupt another scenario at any time.
Further, a scenario may explicitly refer to absolute or
relative dates, respectively.

1.1. Design diagrams

A TURTLE design [3] starts with one class/object
diagram which defines the architecture of the system.
Like processes in a process algebra language, TURTLE
objects may be composed to formally express parallelism,
synchronization (via gates), and preemption between two
objects.

The behaviors of the objects are separately defined in
activity diagrams. TURTLE extends UML activity
diagrams with synchronization actions. New temporal
operators make it possible to express a deterministic
delay, a non deterministic delay that may be associated to
a deterministic one to create a time interval, and a time
limited offer that prevents a ready-to-synchronize object
to be blocked for ever.

1.2. Formal verification

We start from either analysis or design diagrams and
generate the corresponding RT-LOTOS specification.
Assuming the system under design is bounded and of
reasonable size, the RTL tool may generate the
reachability graph of that RT-LOTOS specification. The
graph is often too complex to be analyzed by hand.
Therefore, its transitions are decorated with those actions
identified as important with respect to the set of
requirements to be verified. The result is a labeled
transition system that may me minimized using, e.g.,
Milner’s observational equivalence [13]. The
minimization process outputs one quotient automaton
which gives an abstract view of the system modeled in
TURTLE.

Reachability analysis and minimization take into

account the complete set of objects declared in the
TURTLE model. This set of objects may be limited to
those objects which are parts of the system under design.
Observers may be added to that TURTLE model.
Verification applies to a model made up of two types of
objects: the system objects and observer objects.

So far, observers have been built up manually. In this
paper, it is shown that observers linked with temporal
requirements may be automatically synthesized from
these requirements and added to the TURTLE model of
the system in order to build up a verification-oriented
model.

2. Extended Methodology

This section introduces the four-step methodology
depicted by Fig. 1.

The requirement capture phase starts with a
requirement diagram (RD) definition. Each node in the
RD defines one requirement in plain text, which means
that the requirement in question is informal (in the sense
that it is written in, e.g., English and not using a language
whose syntax and semantics are formally defined). Both
functional and non functional requirements may be
expressed.

Temporal requirements (TRs) are identified in the

previously created requirement diagram (RD). TRs are
expressed using the language defined in section 3. These
formally expressed TRs are added to the RD. They are
used to synthesize observers intended to guide formal
verification and to help achieve traceability.

Fig.1. The TURTLE methodology with

requirement expression and verification

The two dashed lines in Fig.1 indicate that observers
may be generated to be associated with analysis or
design, respectively. Automatic synthesis algorithms are
described in section 4.2.

Also, a traceability matrix is automatically generated
from the results collected by the observers. Again,
automatically generated observers are used to produce
quotient automata demonstrating whether observed
properties hold or not. More details on that matrix are
provided in section.4.4

 3

3. Requirement capture in extended
TURTLE

3.1. Informal presentation of the proposed extension

In SysML, a requirement is a test case stereotyped by
<<requirement>> and characterized by four attributes: an
identifier, a text (an informal description of the
requirement), a type (functional, performance, etc.), and a
criticality level.

In TURTLE, a requirement has the same structure as in
SysML. It may remain informal. An interesting point is
that the “text” attribute may also unambiguously express
a temporal requirement using the language proposed in
section 4.2. Further a “RequirementViolationEvent”
attribute is created to define the label to be used in the
quotient automaton output by the reachability graph
minimization so as to indicate that the temporal
requirement is not met.

3.2. Temporal relations

Temporal relations define the relative positions
between events. The description of theses relations is
based on two classes of temporal models:

• Point based models contain elementary units

representing single events. They are described by
four relations:

o A LESS_T B T: If A occurs at Ta then B
must occur within [Ta,Ta+T].

o A GREAT_TB T: If A occurs at Ta then B
must occur in [Ta+T ; +∞ [.

o A BETWEEN B [T1,T2]: If A occurs at Ta
then B must occur in [Ta+T1 ; Ta+T2].

o A OUTSIDE B [T1,T2]: If A occurs at Ta
then B must occur in] -∞ ; Ta+T1] U [
Ta+T2 ; +∞ [.

• Interval based models defined by Allen’s interval

algebra.
According to [1], the relative positions of two
processes characterized by their respective departure
and completion dates may be characterized by
thirteen patterns that reduce to seven patterns (Tab.
1) when symmetrical situations are taken into
account.

Relation Example

Before

Meets

Overlaps

During

Start

End

Equal

Tab. 1. Allen’s relations [1]

3.3. Temporal requirement expression language

The language for temporal requirements with relative
dates is defined by the following BNF:

Relative-point-temporal-requirement =

 event “LESS_T” event integer
| event “GREAT_T” event integer
| event “BETWEEN” event “[” integer “,” integer “]”
| event “OUTSIDE” event “[” integer “,” integer “]”

where “event” denotes an interaction between two
TURTLE objects. For simplicity we express dates as
integers (as logical unit).

The language is extended to cope with relative
intervals.

Relative-interval-temporal-requirement =
 “(” b-event “,” e-event “)” “BEFORE” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)” “MEETS” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)” “OVERLAPS” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)” “DURING” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)” “STARTS” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)” “FINISHES” “(” b-event “,” e-event “)”
| “(” b-event “,” e-event “)”“EQUALS” “(” b-event “,” e-event “)”

The above BNF assumes there exists two “processes”
which begin and end by performing b-event and e-event,
respectively. Three among the above operators may be
extended to deal with fixed duration. The BNF is
extended as follows:

A B
T

A

B

A

B T1

A

B T1

A

B T2 T1

A

B

T2

T1

A B

 4

Relative-interval-temporal-requirement =
…
| “(” b-event “,” e-event “)” “BEFORE-T” “(” b-event “,” e-event “)”
integer
|“(” b-event “,” e-event “OVERLAPS-T” “(” b-event “,” e-event “)
“[”integer “,” integer“]”
| “(” b-event e-event “DURING-T” “(” b-event “,” e-event “)” “[”integer
“,” integer“]”

The above extension may be used, e.g., to say that one
process A may end before one process B starts, and that
three time units must elapse between A’s completion and
B’s departure.

4. Formal Verification guided by Observers

In TURTLE, formal verification relies on reachability
analysis and labeled transition system minimization.
Besides the reachability graph minimization, the
verification process is further guided by observers. We
add the TURTLE model one (or several) <<tobserver>>
object(s) that we synchronize with appropriate object(s),
i.e. those TURTLE objects which are expected to
implement the requirement to be verified.

4.1. Observer Taxonomy

To the question “Is there a unique type of observer
working for all the operators accepted by TURTLE
requirements diagrams?” the answer is “no Tab. 2
identifies various types of observers.

Features Type Description

Passive
Remains passive if the

requirement is not satisfied
Behavior

Active Cuts all objects behavior if the
requirement is violated

Time /Point Based on relative position of
events

Nature
Time

/Interval Based on Allen’s interval algebra

Local
Observer

Synchronized with the object
which contributes to requirement

satisfaction Construction
Global

Observer
Synchronized with several objects

Non
Intrusive

The behavior of observed objects
is not modified

Function
Intrusive Likely to modify the behavior of

observed objects

Tab. 2. Observer taxonomy

4.2. Observer automatic synthesis

To support the methodology presented in section 2 we
implement an automatic observer generation process.
From formal requirements, it is possible to automatically

derive observers. Currently, this generation process is
proposed for TURTLE analysis and design diagrams (and
not deployments ones).

A user must first describe which requirements he/she
desires to observe. Observers are SysML test cases,
stereotyped as <<tobserver>> (TURTLE observers) that
may be added to TURTLE Requirements Diagrams
(RDs). An observer has a name and makes reference to
one TURTLE analysis or design. The “verify”
relationship defines how a test case verifies a
requirement. In SysML, a test case is intended to be used
as a general mechanism to represent verification methods
[17]. Then, for observers linked to a formal requirement
using a <<verify>> relation, an automatic generation
process modifies the analysis or design TURTLE
diagrams in order to integrate the observer.

For example, the RD depicted in Fig.2 contains two
observers. ObserverXRq0 is intended to verify
requirement X (e.g. “Brake” or “Cruise”) on the TURTLE
design named DesignWithObserver. ObserverX01Rq1 is
intended to verify requirement X01 on the same design.
ObserveXRq012 is aimed to verify requirement X01 on
the TURTLE analysis diagrams AnalysisWithObserver.
ObserverXRq0 is intended to check the system against an
informal requirement. Therefore, that observer must be
modeled by hand (not automatically) and inserted by the
designer inside the appropriate diagrams. On the contrary,
ObserverX01Rq1 and ObserverX01Rq2 check the system
against a formal, temporal requirement. Consequently,
they may be automatically generated using the synthesis
process described afterwards.

Fig.2. Example of a TURTLE requirement

diagram

Automatic generation of observers works as follows.
For each <<tobserver>> of a RD, it selects the ones
observing formal requirements. Then, for each observer,
it considers the diagram (analysis or design) on which the
corresponding behavior must be added:

<<requirement>>
X01

id = “X01Rq”
text= A LESS_T B 5
kind=“performance”
criticality =high
RequirementViolationEvent=
NOK_X01Rq

<<derive>>

<<requirement>>
X

id = “XRq”
text=“B must occur
before A in less than
5 time units”
kind=“performance”
criticality =high

<<tobserver>>
designWithObserver :ObserverX01Rq1

<<verify>>

<<tobserver>>
analysisWithObserver :ObserverX01Rq2

<<verify>>

<<tobserver>>
designWithObserver :ObserverXRq0

<<verify>>

 5

• For an analysis diagram, a preemption operator
is added to the high-level interaction overview
diagram. This operator makes it possible for the
observer to interrupt the system whenever it
observes the violation of its corresponding
property. Also, for each action it observes on a
scenario, a synchronous message is added to this
scenario. The associated arrows start from the
lifeline of the object performing the action to be
observed, and ends to the observer lifeline.

• For a design diagram, the process modifies the

class diagram. A new Tclass (TURTLE class) is
inserted into the diagram. This Tclass
synchronizes with all the Tclasses doing those
actions listed in the requirement. Also, observed
Tclasses must be modified as follows: first, for
each action that must be observed, a duplicate
action synchronized with the observer is
generated and added to their activity diagram
(see the example below for more details). The
behavior of the observer’s Tclass depends on the
formal description of the requirement (see 4.3.).
Whenever the observed property is violated, the
observer stops observing actions, and therefore,
observed classes are blocked because
synchronization on their observed actions is not
offered anymore.

Other requirements parameters are also taken into

account to generate the observers, depending on the
taxonomy presented in 4.1:

• id: used for generating the observer’s name as shown

in the requirement diagram in Fig.2.
• text: used to synthesize the appropriate observer. We

have defined translation patterns for every expression
of the BNF defined in 3.3. The operator (e.g.
LESS_T) determines the observer’s nature (as shown
in Tab. 2). The operator permits to generate the
appropriate observer to guide verification of the
formal requirement. To each formal requirement
operator corresponds one observer’s pattern. These
patterns are described in section 4.3.
Events in the formal text provide information about
observer’s construction (as shown in Tab. 2). If the
events specified in the (formal) text attribute concern
the same object then the observer is local; otherwise
the observer’s construction is global.

• Kind: used for requirement documentation.
• Criticality defines the observer’s behavior (as shown

in Tab. 2). We distinguish between three levels of
criticality:

o Low: the observer is passive; it does not
stop the system.

o Medium: the observer is active; it stops all
the objects concerned by the requirement.

o High: the observer is active; it stops all the
objects in the diagram.

Note: An active observer is necessarily intrusive
because it will stop the object’s behavior if the
formal requirement is violated.

• RequirementViolationEvent: specifies the label
(identifier) used by the observer to denote if the
requirement is not satisfied. This label will appear in
the quotient automaton each time the corresponding
requirement is not satisfied.

Once observers have been automatically generated

from formal requirements, another process automatically
generates traceability matrices to clearly establish
connections between formal requirements and verification
results. Thus, a quotient automaton is automatically
generated to show which requirements are not satisfied
and why they are not. This quotient automaton features
all the events related to a given requirement.

4.3. Observer patterns

Observer patterns rely on elementary TURTLE
operators: for example, timer in analysis and time limited
offer in design. These operators are useful for translating
temporal descriptions presented in section 3.3.

All the patterns are built upon two sub patterns called
LESS_T and GREAT_T. These two patterns are described
hereafter, assuming that the action to execute when the
property is violated is NOK (Not OK).

• LESS_T
This pattern is used for modeling a maximum
duration.
On TURTLE analysis diagrams, a maximum duration
may be modeled using a timer operator. As shown in
Fig.3, the timer is set when the observer receives the
Start action. If the timer expires before the observer
receives the Capture action, the observer executes
the NOK action.

Fig.3. Analysis observer pattern generated

for the LESS_T requirement. Criticality is
assumed to be high.

 6

For TURTLE designs, the time limited offer operator
is used. As shown in Fig.4, the time limited offer
starts just after the Start action was executed. The
observer expects Capture to occur before T time
units. After T time units, the observer executes the
NOK action.
Note: depending on the requirement’s criticality, the
execution of the NOK action may stop the execution
of the system or not (see 4.2).

Fig.4. Design observer pattern generated
for the LESS_T requirement. Criticality is

assumed to be high.

• GREAT_T
Fig.5 shows that the NOK action is sent if the
observer receives one Capture action before the timer
expires. Thus, GREAT_T models a minimal
duration.

Fig.5. Analysis observer pattern generated
for the GREAT_T requirement. Criticality is

assumed to be high.

In Fig.6, a time limited offer on action Capture starts
once action Start has been performed. Then, if

Capture is received before T time units, the observer
sends the NOK action.

Fig.6. Design observer pattern generated
for the GREAT_T requirement. Criticality is

assumed to be high.

All observer patterns are built upon LESS_T and
GREAT_T (Tab. 3).
Note : A—B means “A is immediately followed by B”.

Requirement
expression

Excerpts of patterns

A BETWEEN B
[T1,T2]

A GREAT_T B T1—A LESS_T B (T2-
T1)

A OUTSIDE B
[T1,T2]

A LESS_T B T1—A GREAT_T B (T2-
T1)

(Ab,Ae) BEFORE
(Bb,Be)

Ae GREAT_T Bb 1

(Ab,Ae) MEETS
(Bb,Be)

Ae LESS_T Bb 1

(Ab,Ae) OVERLAPS
(Bb,Be)

Ab GREAT_T 1 Bb—Ae GREAT_T Be
1

(Ab,Ae) DURING
(Bb,Be)

Ab GREAT_T 1 Bb—Be GREAT_T Ae
1

(Ab,Ae) STARTS
(Bb,Be)

Ab LESS_T 1 Bb

(Ab,Ae) FINISHES
(Bb,Be)

Ae LESS_T 1 Be

(Ab,Ae) EQUAL
(Bb;Be)

Ab LESS_T 1 Bb—Ae LESS_T 1 Be

(Ab,Ae) BEFORE_T
(Bb,Be) T

Ae GREAT_T Bb T-1—Ae LESS_T Bb
2

(Ab,Ae)
OVERLAPS_T
(Bb,Be) [T1,T2]

Ab GREAT_T T1-1 Bb—Ab LESS_T
Bb 2—Ae GREAT_T Be T2-1—Ae

LESS_T Be 2
(Ab,Ae) DURING_T

(Bb,Be) [T1,T2]
Ab GREAT_T T1-1 Bb—Ab LESS_T

Bb 2—Be GREAT_T Ae T2-1—Be
LESS_T Ae 2

Tab. 3. Observer patterns derived from
requirement expressions

4.4. Requirement Traceability

The methodology presented in section 2 proposes to
generate a traceability matrix from observer-guided
verification results. An example of TURTLE traceability
matrix is given in Tab. 4.

 7

Req_ID Form_Req Satisfaction

XReq
Temporal requirement

specification defined in 3.3
(e.g. A LESS_T B 5)

Response
(YES/NO)
QA_XReq

Tab. 4. Example of TURTLE Traceability matrix

The TURTLE Traceability Matrix (TM) contains:
• Req_ID: Requirement Identifier defined in the

requirement diagram.
• Form_Req: Formal Requirement defined in the

requirement diagram (described in section 3.3)
• Satisfaction part: described by
o Response collected using observers. If the

labeled action associated with the requirement
violation (NOK_Xreq defined in Fig.2)
appears in the reachability graph, a “NO”
response is displayed in the TM. In the
opposite case a “YES” response is displayed
in the TM.

o One quotient automaton is generated so as to
highlight those actions in the reachability
graph which deals with the temporal
requirement. Also, this quotient automaton
possibly contains one or several transition(s)
labeled by the action introduced to
characterize the violation of that requirement.

5. Application to the Hybrid Sport Utility
Vehicle (HSUV) example

5.1. Requirements Capture

The following sentence defines an informal
requirement for the Hybrid Sport Utility Vehicle
(HSUV). “The hybrid SUV shall have the braking and
acceleration of a typical SUV. It is expected to be
dramatically better fuel economy”. “HSUV” requirement
is split up into “Cruise” and “Brake” requirements.

The “Cruise” requirement concerns the interaction

between CombustionEngine and ElecMotor objects. The
combustion process (Fig.7) must overlap the electrical
one by two time units at the beginning and two time units
at the end (Fig.7). Both engines have three functioning
modes.

Fig.7. Requirement description for Cruise

It shall be quite difficult, if not impossible, to formally
prove that the hybrid SUV has the acceleration of a
typical SUV but has dramatically better fuel economy. By
contrast, it is possible to formalize the temporal
constraints (shown in Fig.7) using Allen’s OVERLAPS
operator. As depicted by Fig.8, the relation between the
two requirements is depicted by one “derive” arrow. The
formal requirement (right part of Fig.8) is the one
considered for formal verification.

Fig.8. Requirement diagram for Cruise

The “Brake” requirement concerns the duration
between the call of Brake (e.g. push the brake pedal) and
the Braking action which represents the end of the
braking process. Arbitrarily, the maximum time between
the Brake and Braking actions is 2 time units (TU). If this
process takes more time than 2 TU, the Brake
requirement is not satisfied (Fig.9).

Fig.9. Requirement description for Brake

The temporal requirement expressed in Fig.9 is used to
create the Brake requirement depicted in Fig.10.

Fig.10. Requirement diagram for Brake

5.2. Analysis

Analysis diagrams of the HSUV are performed once
requirements have been captured. The IOD depicted in
Fig.11 describes the interactions between a Start_Vehicle

<<requirement>>
Cruise1

id = “C1Rq”
text= start_engine stop_engine
OVERLAPS_T
start_elec_motor stop_elec_motor
[2,2]
kind=“performance”
criticality = high
violatedProperty= NOK_C1Rq

<<derive>>

<<requirement>>
Cruise

id = “CRq”
text=“The hybrid SUV
shall have the
acceleration of a
typical SUV but have
dramatically better
fuel economy”
kind=“performance”
criticality = high

<<requirement>>
Brake1

id = “B1Rq”
text= brake LESS_T
Braking 2
kind=“performance”
criticality = high
violatedProperty=
NOK_B1Rq

<<derive>>

<<requirement>>
Brake

id = “BRq”
text=“The hybrid SUV
shall have the braking
capability of a typical
SUV”
kind=“performance”
criticality =high Combustion

Engine

ElecMotor

2 64

Start_engine Stop_engine

Start_elec_motor Stop_elec_motor

Not OK

Not OK

HSUV

1 3 2

Brake Braking

Not OK

 8

scenario (not presented here), a Cruise scenario (e.g. push
the acceleration pedal, see Fig.12), and a Brake scenario
(e.g. push the brake pedal, see Fig.13). Indeed, a driver
pushes either the cruise pedal or the brake one (as with
standard vehicles).

Fig.11. Interaction Overview Diagram of the

HSUV

Fig.12. Cruise scenario of the HSUV

Fig.13. Brake scenario of the HSUV

Once modeled, the second step is to verify the
requirements depicted in Fig.8 and Fig.10 over these
diagrams. Tab. 5 characterizes the observer for the formal
and temporal requirements depicted by Fig.8 and Fig.10,
respectively. The taxonomy was defined in section 4.1.

ID Behavior Nature Construction Function

Observer
B1Rq

Active Time
LESS_T

Local Observer
(HSUV)

Intrusive

Observer
C1Rq

Active Time
OVERLAPS

_T

Global Observer
(ElecMotor,

CombustionEngine)

Intrusive

Tab. 5. Applying the taxonomy to the HSUV’s
requirement

The generation of observers modifies analysis diagrams
as follows. First, the IOD (see Fig.14) is enhanced with a
reference to a new IOD named iod_observer.
iod_observer preempts the other sequences diagrams to
cut those objects whose behavior contribute to implement
the two requirements to be verified (high criticality). The
new IOD models the two requirements to be verified.
Their behaviors correspond to the patterns introduced in
section 4.3.

Fig.14. IOD with automatically generated

observers

5.3. Design

Also, in the design phase, the TURTLE class diagram
is automatically enhanced with two observers (as shown
in Fig.15). This corresponds to the two formal
requirements described by.Fig.8 and Fig.10. They are
connected to other Tclasses, according to the taxonomy
defined in 4.1.

 9

Fig.15. Class diagram of HSUV including

automatically generated observers

5.4. Requirement Traceability

A traceability matrix (see Tab. 6) is generated from the
verification results obtained for either analysis or design
diagrams enhanced with observers. It gathers all
information regarding the verification of formal
requirements (see section 4.4).

Req_ID Req_Text Satisfaction

B1Rq brake LESS_TBraking 2 NO
QA_B1Rq

C1Rq

start_engine stop_engine
OVERLAPS_T
start_elec_motor
stop_elec_motor

[2,2]

NO
QA_C1Rq

Tab. 6. Traceability matrix for the case study

The above matrix indicates that none of the
requirements is satisfied:
o The Brake process takes more time (maximum 3 time

units, see Fig.16) than expected by its requirement (2
time units).

Fig.16. Brake process anomaly

o In the cruise process, the ElecMotor starts on time.
One problem occurs at the end of CombustionEngine
process, which may end later than expected (see
Fig.17). The duration of CombustionEngine must be
modified to fix this problem.

Fig.17. Cruise process anomaly

Today, the observer automatic generation and
verification process is still under development. It will be
supported very soon by next beta version of TTool.

6. Related Work

SysML particularly answers expectations of system
engineers for a UML-based notation that would be less
software centric than UML 2.0 and that would bring
support for the requirement capture phase [11]. For
instance, [19] proposes an extended SysML with bond
graphs, a notation used to describe energy flows between
mechanical blocks inside one system. Unlike [19], this
paper does not reuse SysML block diagrams and ignores
the functional design style inherent to diagramming with
SysML blocks.

The novelty in TURTLE requirement diagrams lies in the
possibility to formally express requirements and to
associate them with verification results.

Several requirement expression languages have already
been proposed in the literature. Parts of them are specific
to a single application domain. For instance, LDE applies
to avionic systems in the framework of CARROLL
project [5]. Also, EAST-ADL applies to automotive
architecture in the framework of EAST-EEA [9] (ITEA
project). Among various general purpose languages, [8]
proposes to build constraint diagrams based on duration
calculus. Objectiver tool [15] is based on the KAOS [7]
methodology which provides a language and a method for
goal driven requirement elaboration. This tool enables
analysts to elicit and specify requirements in a systematic
way and to achieve traceability from requirements to
goals.

A survey of the literature indicates that research work on
requirements and formal verification are often closely
related to each other. For instance, [12] proposes a

HSUV

1 32

Brake Braking

NOK

NOK
Combustion
Engine

ElecMotor

2 64

Start_engine Stop_engine

Start_elec_motor Stop_elec_motor

NOK

 10

graphical modeling language based on requirement
patterns. The latter are translated into LTL formula and
verified using model-checker SPIN. In [10], temporal
requirements are expressed as state machines that define a
so-called ‘requirement and context model’. Both the
system’s model and the state machines are translated into
IF, the Intermediate Form defined in the framework of
OMEGA project. IF is supported by formal verification
tools [10]. In [10] the authors say they are looking for a
requirement expression language from which context
state machines and observers might be automatically
generated. This objective is met by the extended
TURTLE discussed in this paper. Observers may indeed
been generated from temporal requirements and
verification results are included into traceability analysis.

7. Conclusions and future work

TURTLE is a real-time UML profile designed with
formal verification in mind. The TURTLE toolkit indeed
enables application of formal verification techniques
throughout the life cycle which underlies the TURTLE
methodology. So far, that methodology covered analysis,
design and deployment diagrams. The requirement
capture phase has been ignored.

This paper proposes to extend TURTLE with SysML
requirement diagrams. Like SysML, TURTLE enables
informal requirement description. Our profile is further
extended in such a way that temporal requirements may
be described in a language based on Allen’s intervals
algebra.

Both informal and formal requirements may be used for
verification, and more precisely formal verification
guided by observers. For informal requirements, it is the
responsibility of the user of TTool to build up observers
that are relevant for the requirements in question. The
good news is that for those temporal requirements which
are expressed using the language based on Allen’s
algebra, observers may be automatically synthesized.
This applies to observers to be associated with analysis
diagrams, and to observers to be synchronized with
design diagrams as well.

Discussion in this paper has clearly been focused on
temporal requirement expressions and formal verification.
Automatic synthesis of observer is an important step
towards requirement traceability. An important
contribution of the paper is that traceability matrices may
be automatically generated from formal verification
results. The synthesis approach discussed in the paper is
being implemented in TTool. The latter’s diagramming
capability is extended to support requirement diagrams.

Next step is to not limit formal requirements to temporal
requirements based on Allen’s algebra. Solutions are to
be sought to include LTL formula inside the “text” field
of TURTLE requirements.

References

[1] J.F. Allen, “Maintaining Knowledge About Temporal
Intervals,” Communications of the ACM, Vol. 26, No. 11,
pp.832-843, Nov. 1983.

[2] C. André, “Computing SyncCharts,” ESLAP’03
(Synchronous Languages, Applications and
Programming), Porto, Portugal, July 2003

[3] L. Apvrille, J.-P. Courtiat, C. Lohr, P. de Saqui-Sannes,
“TURTLE: A Real-Time UML Profile Supported by a
Formal Validation Toolkit”, IEEE Transactions on
Software Engineering, Vol. 30, No. 7, July 2004, pp.473-
487.

[4] http://www.inrialpes.fr/vasy/7/
[5] http://www.carroll-research.org/
[6] J.P. Courtiat, C.A.S. Santos, C. Lohr., B. Outtaj,

“Experience with RT-LOTOS, a Temporal Extension of
the LOTOS Formal Description Technique”, Computer
Communications, Vol. 23, No.12, pp.1104-1123, 2000.

[7] A.Dardenne, A.van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition”, in The Science of
Computer Programming 20, 1993.

[8] C. Dietz. “Graphical formalization of real-time
requirements,” In B. Jonsson and J. Parrow, eds, Formal
Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’96), Uppsala, Sweden, LNCS 1135, pp. 366-
385, Springer-Verlag, 1996.

[9] http://www.east-eea.net/
[10] S. Graff, I. Ober, I. Ober, “Validating Timed UML

Models by Simulation and Verification,” STTT
International Journal On Software Tools for Technology
Transfer, 2005.

[11] M. Hause, F. Thom, A. Moore, “Inside SysML,” IEE
Computing & Control Engineering, pages 10-15,
Aug./Sept. 2005.

[12] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, P.
Stappen, “Model Checking for Managers,” Spin’99,
pp.92-107, 1999.

[13] R. Milner, “Communication and Concurrency,” Prentice
Hall, 1989.

[14] Object Management Group, “Unified Modeling Language
Specification”, Version 1.5,
http://www.omg.org/docs/formal/03-03-01.pdf, March
2003.

[15] http://www.objectiver.com/
[16] http://www.laas.fr/ RT-LOTOS
[17] http://www.SysML.org/docs/specs/SysML-v1-Draft-06-

03-01.pdf
[18] http://www.telelogic.com
[19] S. Turki, T. Soriano, “A SysML extension for Bond

Graph support,” 5th International Conference on
Technology and Automation, Thessaloniki, Greece,
October 2005.

[20] http://labsoc.comelec.enst.fr/TURTLE/

