

TTool Training

III. Using TTool

Ludovic Apvrille <u>ludovic.apvrille@telecom-paris.fr</u>

Eurecom, Office 223

Ludovic Apvrille - UML - 2005. Slide #1

I. Introduction

TTool: main features

- Installing TTool
- **Diagramming with TTool**
- **Formal validation**
- **Java code generation**

TTool: General Overview

I. Introduction

TTool: main features

Installing TTool

- **Diagramming with TTool**
- **Formal validation**
- **Java code generation**

Inside a TTool package

- 🗊 ttool.jar
- 🗊 launcher.jar
- config.xml
- ftoolmanual.doc
- *.xml: examples (files into which ttool modeling are saved)
- *.lib: librairies (diagrams that can be included into other diagrams)

Starting TTool

JVM 1.4.2 or later must be installed on every machine running TTool or an external program

Configuration of the xml file

□See next slide

Starting of the main program from a terminal

□ java –Xmx256m –jar ttool.jar MyConfig.xml

The launcher must be started on each machine on which an external application is used (RTL, CADP/Aldébaran, Graphviz)

□java –jar launcher.jar

Example of Configuration

Configuring config.xml

<RTLHost data="cow13.eurecom.fr"/> <RTLPath data="/homes/apvrille/RT-LOTOS/Linux/rtl/bin-linux/rtl" /> <DTA2DOTPath data="/homes/apvrille/RT-LOTOS/Linux/rtl/bin-linux/dta2dot" /> <RG2TLSAPath data="/homes/apvrille/RT-LOTOS/Linux/rtl/bin-linux/rg2tlsa" /> <RGSTRAPPath data="/homes/apvrille/RT-LOTOS/Linux/rtl/bin-linux/rgstrap" /> <DOTTYHost data="chaland.eurecom.fr" /> <DOTTYPath data="/homes/apvrille/softs/gv1.7c/bin/dotty"/> <AldebaranHost data="cow13.eurecom.fr" /> <AldebaranPath data="/homes/apvrille/cadp/bin.iX86/aldebaran" /> <BcgioPath data=''/homes/apvrille/cadp/bin.iX86/bcg_io'' /> <FILEPath data="U:\RT-LOTOS\TURTLEModeling" /> <LIBPath data="U:\RT-LOTOS\TURTLELibrary" /> <IMGPath data="U:\Figure" /> <LOTOSPath data="U:\RT-LOTOS\TURTLEModeling" /> <GGraphPath data="U:\RT-LOTOS\TURTLEGraphs" /> <TGraphPath data="U:\RT-LOTOS\TURTLEGraphs" /> <TToolUpdateURL data="http://www.eurecom.fr/~apvrille/TURTLE/ttoolversion.html" /> <TToolUpdateProxy data="false" /> <TToolUpdateProxyPort data="8080" /> <TToolUpdateProxyHost data="To Be Completed" />

I. Introduction

- **TTool: main features**
- **Installing TTool**
- **Diagramming with TTool**
 - **Formal validation**
 - **Java code generation**

Starting TTool

TURTLE Toolkit File Edit Diagram V&V View T	iool Help 後回自己》 C (()) Help	J'AT
		THP THP
Capture the main window		

Opening a TURTLE Modeling

Menu File, Open, and then select the desired modeling

Ludovic Apvrille - UML - 2005. Slide #11

Navigating into Diagrams

UML - 2005. Slide #12

Dealing with Libraries

- Libraries = file in which parts of diagrams are stored
- Example: classes, activity diagrams, etc.

From TTool:

Creation of libraries

- Select components
- Menu File, "Export library"

□Inclusion of libraries

- Put the mouse pointer in the diagram in which you wish to import the library and Make a right click, select "Insert library"
- <u>Or</u>, menu File, "Import library"

Only way to copy/paste diagrams from a modeling to another

Dealing with Libraries: Example

TI ()	JRTLE	Toolkit: U:\	RT-LO	TOS\TU	RTLEModel	ing\Train	ing\DrinkM	achine.xi	ml
File	Edit	Diagram	V&V	View	Tool Hel	p			
	New				Ctrl-N	0 t	Э¢		< ►
6	Open				Ctrl-O				
	Save				Ctrl-S	- 🛱 D	esign		
8	Save a	is				agram	截 Machi	ne 薪	Wallet
8	Save I	ast RT-LOT	IOS sp	ecificat	ion	8-8	H 1		PAR
Sav	re Last	Graphs			•				
凸	Impor	t library			Ctrl-E		<start>></start>		
ß	Expe	mport librai	Y Ctrl-E		Ctrl-I	2 : Natura	al;		
۲	Quit			_	Ctrl-Q	iral;			
				Nonnon.	- userbi	èlay = 2 : I atency = 4	Natural; : Natural;		
				ananan a	+ coinB	ack : InGa	ite;		

TeaButton	<mark>Synchro 4</mark>
mechanicalDelay = 2 : Natural;	
pushTea : Gate;	Paste
	Insert Library
	Increase horizontal size
	Increase vertical size
	Decrease horizontal size
	Decrease vertical size
	Rename diagram
	Delete diagram

Creating a Library

c Apvrille - UML - 2005. Slide #15

I. Introduction

- **TTool: main features**
- Installing TTool
- **Diagramming with TTool**
- Formal validation
 - **Java code generation**

What is Validation?

Simulation

□ Partial exploration of the system

- Used for debugging purposes
- □Increases confidence in a design when the system' state space cannot be explored exhaustively

Validation / Verification

- □ For bounded systems of reasonable size, exhaustive analysis becomes possible
- Verification relies on the whole exploration of the system's state space in order to demonstrate deadlock freeness and other properties that should be satisfied by any system
- □ Validation also relies on exhaustive analysis to demonstrate that a model meets specific requirements

Simulation / Validation Process

Ludovic Apvrille - UML - 2005. Slide #18

Simulation / Validation Process (Cont.)

Syntax Analysis (From a Design)

Syntax Analysis (From a Design): Errors

Generation of an RT-LOTOS Specification

Click on the magic stick

You can visualize the RT-LOTOS specification if needed, and save it from

- □Menu "View"
- **"***"Show last RT-LOTOS specification"*
- □*Advice: for you, this visualizing this specification is useless*

RT-LOTOS Code Checking

- The syntax analysis of TURTLE models that you applied before generating RT-LOTOS code avoids the most common errors.
- Nevertheless, the current version of TTool does not implement a full syntax analysis.
- Before starting simulation or a reachability analysis, it is advisable to use the Check RT-LOTOS Code icon. The code is analyzed by RTL.
- This takes the form of a one second simulation with RTL

RT-LOTOS Code Checking (Cont.)

Checking RT-LOTOS specification with RTL	×
Click on 'start' to launch process Sending file data Sending process request	^
RTL Process:	
Using seed = 1100612590	
User=0.0s (0:0min) System=0.64453s Memory = 0/0 kbytes	
Execution time: 0:0s Speed in lotos machine: 3 states/s (3 states) Speed in cimulation: 2 states/s (3 states)	
RT-LOTOS end time: 4	
 RTL process stopped	
	 ▶ i
Start Stop Close	

Simulation

Simulation options Logical actions > temporal actions (default option) Logical actions = temporal actions (SIM-1 option) Simulation time: 20	<pre> } Simulation options }</pre>
Select options and then, click on 'start' to launch simulation	Maximum number of time units used for simulation
	Information about the simulation with RTL, and results
 ✓ ✓	

Analyzing Simulation Traces

Generating a Reachability Graph (RG)

 Formal Validation with RTL Validation options Make Dynamic Timed Automaton Make Reachability Graph (default format) from DTA on the fly generate TLSA 	■ Graph with temporal information
Make reachability of apri (Aldebai an Tormat) from DTA on the fly Select options and then, click on 'start' to launch validation Image: start is a start is	Graph without temporal information. Only graph that can be used as input for projection / minimization Information about the generation of RG with RTL, and results

Visualization of Graphs (Default Format)

Ludovic Apvrille - UML - 2005. Slide #28

Visualization of Graphs (Cont.)

Visualization of Graphs: AUT Format

Ludovic Apvrille - UML - 2005. Slide #30

Analysis of Graphs: AUT Format

🛞 Analysis on the last RG (AUT format)							
🕼 General info	. 🔞 Sta	itistics	(Deadloc	ks 🤇) Short	est Paths	İ.
Transition	Nb						(origin
coin_in	9	(0, 5), (1	, 7), (2, 7), (8,	16), (11,	21), (12	2, 23), (13, 2	3), (17,
eject_coin<1>	9	(1, 8), (3	, 8), (4, 8), (12	, 8), (14,	8), (15,	8), (17, 8),	(19, 8), (
eject_coin<2>	3	(6, 11), (22, 11), (24, 1	1)			
pushCoffee	6	(6, 9), (7	, 9), (22, 26), (23, 26),	(24, 28)	, (25, 28)	
t	15	(1, 4), (2	, 1), (4, 3), (5,	2), (7, 6)	, (12, 15), (13, 12),	(15, 14),
tea	6	(6, 10), (7, 10), (22, 27), (23, 21	7), (24, 2	29), (25, 29)	
Close							
Analysis on the last RG (AUT format)							
🕼 General info	General info. Statistics Deadlocks Shortest Paths						
Shortest path from	n	0	•	to		0	•
		ą	🏂 Compute				

Close	

Ludovic Apvrille - UML - 2005. Slide #31

Projections (Aldebaran)

Ludovic Apvrille - UML - 2005. Slide #32

Gates synchronized with the selected gates

Projected Graph

From Graphs to TURTLE Actions

Ludovic Apvrille - UML - 2005. Slide #34

Common Modeling Errors

- **Infinite loops**
- Number of actions generated at t=0 is infinite
- -> Simulation cannot be performed
- Use of many attributes / variables
- Use of asynchronous messages (analysis)
- Use of many non-deterministic delays and choices
- -> Generation of reachability graph is difficult / long (combinatory explosion)
- Non-implementable scenarios (analysis)
 - -> Abnormal deadlock situations or nothing particular except that traces on the graph / simulation traces do not match specified traces

Observing Properties

Model checking

□ kronos

Observers

- □ Avoid generating the full graph -> cut branches before they are generated
- Decided as Tclasses at class diagram level
- □ Should be non intrusive
- □ Should not induce an important overhead when generating the graph
 - Keep them simple!
- □ Should stop the application under verification when a property violation is detected
 - "error" transition
 - Observer should synchronize with other classes to stop them

Example of Property Observation

I. Introduction

- **TTool: main features**
- Installing TTool
- **Diagramming with TTool**
- **Formal validation**
- Java code generation

Fundamentals of Java Code Generation

Java code may be generated from

- **UTURTLE** designs
 - Monolithic application -> 1 executable application
- *TURTLE deployments*
 - Distributed application -> 1 executable application / execution node

Steps

Configuration of TTool
 Adding of directives
 Generation of code
 Compilation of code
 Execution of code

Configuration of TTool

config.xml

□ <*JavaCodeDirectory data=''U:\RT-LOTOS\JavaCode\'' />*

- Directory in which Java code is generated
- □ <JavaCompilerPath data=''[C:\Program Files\j2sdk_nb\j2sdk1.4.2\bin\javac.exe'' />
 - Compiler used to compile generated Java code
- </
 - Classpath used at compilation / execution
- □ <JavaExecutePath data=''[C:\Program Files\j2sdk_nb\j2sdk1.4.2\bin\java.exe'' />
 - Link to the Java virtual machine used for executing generated Java code

Libraries

Used by the generated Java code
Should be located in the TToolClassPath

Adding directives

TURTLE design

Code may be added on the following operators of activity diagrams

- Actions
- Variable settings
- □ Java code executed before the action
- □ Java code executed after the action

udovic Apvrille - UML - 2005. Slide #41

Adding directives (Cont.)

TURTLE deployment

- Code may be added to TURTLE components (considered as TURTLE designs)
- Communication protocols between TURTLE components may be specified on links between TURTLE nodes
 - UDP, TCP, RMI

Info. on protocols

Generating Java Code

- Check the syntax of your modeling
- Then, select the Generate JAVA icon
- Set various options, including
 - □ TURTLE time unit vs. Java time unit
 - Debug information

Compiling Java code

🛞 Java code generation and compilation	×
Generate code Compile Execute	
Compilation	
Compile Java code in	
U:\RT-LOTOS\JavaCode\	
with	
"C:\Program Files\j2sdk_nb\j2sdk1.4.2\bin\javac.exe"	
Select options and then, click on 'start' to launch java code genera	
	-
Start Stop Close	

Executing Generated Java Applications

Monolithic applications

- Generated from TURTLE designs
- □ Use of the provided graphical interface
- **Distributed systems**
 - **Command line**
 - Various applications should be started in the right order
 - Server side before client side

- Start *rmiregistry* first
- Set the security policy
- Run various instances
- See the online help for more information

💮 Java code gene	ration and c	ompilation			X
Generate code	Compile	Execute			
Code generation					
Execute Java app	lication:				
MainClass					
with					
"C:\Program Files	\j2sdk_nb\j2:	sdk1.4.2\bin\	java.exe"		
Classpath:					
U:\RT-LOTOS\Jav	aCode\				
Select options	and then, c	lick on 'stai	t to launch	java code	genera
 Resourcessonsesses 				6	`
	Start			Clasa	•

Ludovic Apvrille - UML - 2005. Slide #45

How to Improve Generated Code?

Do not use non deterministic choices

- **They are not deterministic**
- □ The Java code generator may not interpret them as you expected
- Creation of parallel subactivities, sequence operators, preemption operators are translated using Java threads for each subactivies

□*Performance drawback*

Examples / Exercises

http://www.eurecom.fr/~apvrille/TURTLE/HELP/index.html
"Example" section

Technical support, maintenance, bug report

Iudovic.apvrille@enst.fr

