
TTool Training

I. Introduction to UML

Ludovic Apvrille – TTool Training - 2004. Slide #1

I. Introduction to UML

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr

Eurecom, Office 223

Outline of the Training

� Introduction to UML
� Modeling with UML
� Main diagrams for embedded systems and protocols

� The TURTLE profile
� Design with TURTLE

Ludovic Apvrille – TTool Training - 2004. Slide #2

� Design with TURTLE
� Analysis with TURTLE

� The TURTLE Toolkit (TTool)
� Exercises

� Special thanks to Pierre de Saqui-Sannes who actively
participated in the elaboration of these slides

I. Introduction to UML

� Introduction to modeling
�OMG
�UML 1.5 and UML 2.0
�UML for embedded systems and protocols

Ludovic Apvrille – TTool Training - 2004. Slide #3

�UML for embedded systems and protocols
�Objects in a nutshell
�Analysis with UML
�Design with UML
�Detailed design with UML

What is UML?

�UML = Unified Modeling Language

�Main characteristics of UML
�Graphical modeling language for complex systems

Ludovic Apvrille – TTool Training - 2004. Slide #4

Graphical modeling language for complex systems
� Specification, design, automatic code generation, documentation
� Independent of any programming language

�Object-oriented design
�Supported by many CASE Tools

� CASE = Computer-Aided Software Engineering

�Warning: no standard UML methodology

A Few Questions …

� What is graphical modeling?

� Where does UML come from?

� Why should engineers use UML?

Ludovic Apvrille – TTool Training - 2004. Slide #5

� Why should engineers use UML?

� Is the use of UML relevant for
embedded systems / real-time
systems?

� A modeling = an abstraction of the system to design
� Representation of the main functionalities of a complex system
� Non relevant details are ignored

� Abstractions make it possible to deal with complexity

What is Modeling?

Ludovic Apvrille – TTool Training - 2004. Slide #6

� An engineer, or a development team, cannot have a global
understanding of complex systems

� A modeling is a view of a system according to some
assumptions

� Architects
� Tailors
� Statisticians
� Engineers

Who Uses Modeling?

Ludovic Apvrille – TTool Training - 2004. Slide #7

� Engineers
� Mechanics, Mechanics of fluid,
� Protocols,
� Electronic, microelectronic

� No exception for software!
� And more particularly, for embedded systems

Why Use UML for Modeling?

� Standard notation
� Known by a growing number of people
� Supported by matured tools

� Best understanding of systems by
� Clients, experts of the domain, designers, programmers

Ludovic Apvrille – TTool Training - 2004. Slide #8

� Clients, experts of the domain, designers, programmers

� Support of engineering work
� Abstract view of the system
� Life cycle

� Focused on first steps: requirement analysis, design
� Simulation, automatic generation of code (ADA, C, Java, C++, etc.)
� Documentation
� Maintenance, revision

� Reuse

� UML gathers best practices of software engineering

� Modeling of complex (and software-based) systems

OMG (Object Management Group) standard

Gathering on UML

Ludovic Apvrille – TTool Training - 2004. Slide #9

� OMG (Object Management Group) standard
� The reference
� http://www.uml.org
� A notation

� Box semantics

� 12 diagrams for expressing complementary point of
views

� A notation
� Semantics?

� Metamodel
� No formal semantics

� No methodology
Process suggested by UML tool dealers

Gathering on UML (Cont.)

Ludovic Apvrille – TTool Training - 2004. Slide #10

� Process suggested by UML tool dealers
– Unified process

• RUP – Rational Unified Process

� Extension capabilities
� Profiles

UML Views and Diagrams

�A view describes a statistical or a dynamical aspect of
the system

�For each view
�Several diagrams are available
�Example: interactions between objects

Ludovic Apvrille – TTool Training - 2004. Slide #11

�Example: interactions between objects
� Sequence diagrams
� Collaboration diagrams

�Components of views
�Classes, ports, interfaces, actors, messages, etc.

�Mechanisms for extending diagrams
�Stereotypes, notes, constraints

I. Introduction to UML

� Introduction to modeling
�OMG
�UML 1.5 and UML 2.0
�UML for embedded systems and protocols

Ludovic Apvrille – TTool Training - 2004. Slide #12

�UML for embedded systems and protocols

Origin of UML

Booch

Odell
Classification Meyer

Pre- and post- conditions

Jacobson

Rumbaugh

Ludovic Apvrille – TTool Training - 2004. Slide #13

UML
Shlaer-Mellor
Object life cycles

Embly
Singleton classes

Gamma et al.
Frameworks, patterns, notes

Fusion
Operation descriptions
Message numbering

Wirfs-Brock
Responsibilities

Harel
State charts

The OMG

�Object Management Group
�Non-profit organization
�Goal: definition of standards related to object-oriented

services

Ludovic Apvrille – TTool Training - 2004. Slide #14

�MOF, UML, XMI, CWM, CORBA (includes IDL, IIOP)

�Chronology
�1989: 11 creating members
�Nowadays, more than 800 members
�Members have more or less important vote weight

I. Introduction to UML

� Introduction to modeling
�OMG
�UML 1.5 and UML 2.0
�UML for embedded systems and protocols

Ludovic Apvrille – TTool Training - 2004. Slide #15

�UML for embedded systems and protocols

Towards UML 2.0

OMT

ROOM

MSC & SDL
UML
2.0

August 2003

Ludovic Apvrille – TTool Training - 2004. Slide #16

OMT
(Rumbaugh et al.)

Booch

OOSE
(Jacobson et al.)

UML
0.9

1996

UML
1.1

Nov. 1997

UML
1.5

2002

Statecharts

From UML 1.5 to UML 2.0
1. Use Case diagram
2. Class diagram
3. Object diagram
4. Statechart diagram
5. Activity diagram
6. Sequence diagram

1. Class diagram
2. Use case diagram
3. Object diagram
4. State machine diagram
5. Activity diagram
6. Sequence diagram

renamed

renamed

Ludovic Apvrille – TTool Training - 2004. Slide #17

6. Sequence diagram
7. Collaboration diagram
8. Component diagram
9. Deployment diagram

6. Sequence diagram
7. Communication diagram
8. Component diagram
9. Deployment diagram
10. Composite structure diagram
11. Interaction overview diagram
12. Timing diagram
13. Package diagram

renamed

new
new
new
new

Overview

::

::

<<usecase>>

<<usecase>>

<<usecase>>

<<usecase>>

<<usecase>>

<<usecase>>

::
<<include>><<include>>

m1
m2

Ludovic Apvrille – TTool Training - 2004. Slide #18

Class1

Class1

Class2

Class2

Class3

Class3

Class4

Class4

Class5

Class5

p3:Class3

p3:Class3

p5:Class5

p5:Class5
C

C

I. Introduction

� Introduction to modeling
�OMG
�UML 1.5 and UML 2.0
�UML for embedded systems and protocols

Ludovic Apvrille – TTool Training - 2004. Slide #19

�UML for embedded systems and protocols

UML for Embedded Systems

� Specificity of embedded systems and protocols
� Strict constraints

� Performance constraints, real-time constraints, etc.
� Critical aspect

� Limited resources
� Interactions between components

Ludovic Apvrille – TTool Training - 2004. Slide #20

� Specific UML methodology
� Make use of some UML diagrams rather than others
� Make use of simulation techniques as soon as possible in the development

cycle
� Critical systems

� Specific UML toolkits
� Profiles

A UML Methodology Focused on Embedded
Systems and Protocols

Detailed design
Behavior of the system

Validation of the system
Simulation

Code generation

Ludovic Apvrille – TTool Training - 2004. Slide #21

Analysis
Use case

First class diagram
Relevant scenarios

Design
Classes of the system

Architecture of the system

Analysis Stage

� Purpose
� Analysis of the requirements of the system

� Steps
� Identification of use cases of the systems, and structuring of these cases

� Use case diagram

Ludovic Apvrille – TTool Training - 2004. Slide #22

� First scenarios emphasizing exchanges between actors of the system and the
system itself

� Sequence diagram

� Identification of the main classes of the system
� Class diagram

� Refined Scenarios
� Classes identified at previous step are introduced into previously performed scenarios
� Sequence diagrams

Design stage

� Purpose
� Structure the system under the form of classes and relations among those

classes

� Steps
� Identification of secondary classes

Class diagram

Ludovic Apvrille – TTool Training - 2004. Slide #23

� Class diagram

� Identification of relations between classes
� Association, aggregation, specialization, etc.
� Class diagram

� Modeling of class hierarchy
� Class diagram / Composite structure diagram

� Modeling message exchange between classes
� Class diagram / Composite structure diagram

Detailed Design Stage

� Purpose
� Describe the behavior of the system

� Steps
� Description of classes behavior

� Signals, operations

Ludovic Apvrille – TTool Training - 2004. Slide #24

� Signals, operations
� State machine diagram / Activity diagram

� Description of the system dynamics
� Creation / destroy of instances
� State machine diagram / Activity diagram

� Refinement of relations among classes
� Specialization
� Class diagram

Validation Stage

� Purpose
� Check that the behavior of the system corresponds to the

targeted one

� Steps
� Simulation

Ludovic Apvrille – TTool Training - 2004. Slide #25

� Simulation
� Validation of the modeling as soon as possible
� Modeling made at analysis stage and design stages are compared
� Use case diagrams, Sequence diagrams vs.class diagrams, composite

structure diagrams and state machine diagrams (or activity diagrams)

� Implementation
� Automatic code generation

– C, C++, Java, Ada
� Class diagrams, composite structure diagrams and state machine diagrams

(or activity diagrams)

UML Diagrams for Embedded Systems and
Protocols

1. Class diagram
2. Use Case diagram
3. Object diagram
4. State machine diagram
5. Activity diagram
6. Sequence diagram

Ludovic Apvrille – TTool Training - 2004. Slide #26

6. Sequence diagram
7. Communication diagram
8. Component diagram
9. Deployment diagram
10. Composite structure diagram
11. Interaction overview diagram
12. Timing diagram
13. Package diagram

UML Toolkits for Embedded Systems

� Goal: edition of diagrams, animation, code generation

� TAU G2
� www.telelogic.com

� Rhapsody
� www.ilogix.com

Ludovic Apvrille – TTool Training - 2004. Slide #27

� ARTiSAN Real-Time Studio
� www.artisansw.com

� (ROSE-RT)
� www.rational.com

� TTool!
� www.eurecom.fr/~apvrille/TURTLE

Books

�Michael Jesse Chonoles, James A. Schardt, “UML 2 for
Dummies”, Wiley, 2003, ISBN 0-7645-2614-6

�Laurent Doldi, “UML 2 Illustrated - Developing Real-
Time & Communications Systems”, TMSO , 2003,
ISBN 2-9516600-1-4
http://perso.wanadoo.fr/doldi/sdl/umlbook.htm

Ludovic Apvrille – TTool Training - 2004. Slide #28

http://perso.wanadoo.fr/doldi/sdl/umlbook.htm
�Tom Pender, “UML Bible”, John Wiley & Sons, 2003,

ISBN 0764526049
�Luciano Lavagno et al., “UML for Real: Design of

Embedded Real-Time Systems”, Kluwer Academic
Publishers, ISBN 1-4020-7501-4

Structured vs. Object-Oriented Programming

� Structured programming
� = Imperative programming
� Programs are structured into subprograms to manage complexity
� Emphasizes functions

� But: data is what is most likely to be stable in the life of a program

Ludovic Apvrille – TTool Training - 2004. Slide #29

� But: data is what is most likely to be stable in the life of a program

� Object-oriented programming
� First focused on data rather than on functions
� A computer program is composed of a collection of individual units, or objects
� Challenge of programmers: distribute responsibility over objects

Fundamentals of Objects

� Object-oriented paradigm
� A problem is addressed with object-oriented concepts

� An object is an abstraction of data themselves
containing abstractions of functions

Ludovic Apvrille – TTool Training - 2004. Slide #30

containing abstractions of functions

� Objects exchange messages
� They collaborate together to achieve predefined tasks

Definitions

� Booch, Object-Oriented Design with Applications
� An object is made of a state, a behaviorand of an identity
� The terms “instance” and “object” are interchangeable

� Rumbaugh et al., Object-oriented Modeling and Design

Ludovic Apvrille – TTool Training - 2004. Slide #31

� Design, abstraction or “thing” whose frontiers and
significations are very close to the addressed problem

� Jacobson, Object-oriented Software Engineering, a Use-
Case Driven Approach
� An object is en entity able to save a state(information) and that

offers a given number of operationsto consult this state or to
modify it

Examples of Objects

Ludovic’s last name
Ludovic’s address
brut Income
net Income
taxable income

Ludovic
number
title
author
duration

Course on UML

Ludovic Apvrille – TTool Training - 2004. Slide #32

taxable income

flighNumber
owner
departureAirport
arrivalAirport

Plane ticket for Paris
Plane ticket for Moscow

state (on / off)
switch

flighNumber
owner
departureAirport
arrivalAirport

Example of Objects and Messages

switch on switch off

state (on / off)
switch

Ludovic Apvrille – TTool Training - 2004. Slide #33

print

flighNumber
owner
departureAirport
arrivalAirport

Plane ticket for Paris Plane ticket for Moscow
flighNumber
owner
departureAirport
arrivalAirport

States Characterized by Attributes

� The value of the attributes defines the state of the
object
� Static characteristics
� Dynamic characteristics

Ludovic Apvrille – TTool Training - 2004. Slide #34

� Exercises
� What are the attributes of a checking account?

� Issue of the access rights to attributes!

A Behavior Based on Operations

� Operations are all possible actions on an object
� A response from the object might be required

� An object O1 can communicate with an object O2
� Invocation of an operation of O2

Ludovic Apvrille – TTool Training - 2004. Slide #35

� Issue of the access rights to operations!

Notion of Message

�One-way communication between two objects
�Flow of control with information passed from the

sender to the receiver.
�May have parameters that convey values

Ludovic Apvrille – TTool Training - 2004. Slide #36

�Can be
�a signal
�a call
�a return
�create
�destroy

Classes and Objects

� Same duality as “type” and “variable”
� Class

� Unit that eases the definition of objects sharing common
characteristics

� Attributes, operations

Ludovic Apvrille – TTool Training - 2004. Slide #37

� Attributes, operations

� Object
� An entity of the real world built upon an abstract unit
� Instance of a class

� Attributes and operations are defined in the corresponding class

� State of an object = value of its attribute at a given time
� Behavior of an object = set of operations it can perform when

reacting from messages coming from other objects

Example of Classes in UML

Name of the class
UML Comment

BankAccount

-value : int

BankAccount

-value : int

A basic bank account has no
granted overdraft
A basic bank account has no
granted overdraft

Ludovic Apvrille – TTool Training - 2004. Slide #38

List of attributes
- : private

Liste of operations
+ : public

-value : int
-owner
-amount

+credit(float)
+debit(float)

-value : int
-owner
-amount

+credit(float)
+debit(float)

granted overdraft
or maximum deposit amount
granted overdraft
or maximum deposit amount

Attributes and Operations of Instances

� All instances of the same class have the same behavior
� Operations

� Each instance has its own state

Ludovic Apvrille – TTool Training - 2004. Slide #39

� Attributes of the instance
� Their value may be different for each instance

� Are global variables possible in the object-oriented
paradigm?
� Attributes common to all instances of a class

Fundamentals of Object-Oriented Paradigm

� Modularity
� The computer program is built entirely inside classes

� Encapsulation
� Information hiding

No need to have a knowledge of the inside of a class to use it -> only the

Ludovic Apvrille – TTool Training - 2004. Slide #40

� No need to have a knowledge of the inside of a class to use it -> only the
knowledge of its interface is required

� Abstraction
� Objects: abstraction of the real world
� Classes: abstraction of objects

� Reusability

Interaction Overview Diagrams

Ludovic Apvrille – TTool Training - 2004. Slide #41

UML Sequence Diagrams

� Basics of sequence diagrams
� Gives clear visual clues to possible flows of control over time
� Emphasizes time ordering
� Shows object lifeline
� Shows the focus of control

Ludovic Apvrille – TTool Training - 2004. Slide #42

� UML 1.5
� Notion of message (or stimulus) and of lifeline
� Observation of time
� Temporal constraints
� Activation of an object

� UML 2.0
� Suspension, interaction, duration constraints

Basic Syntax

Object3

Object3

Object2

Object2

Object1

Object1

message1 ()message1 ()

message2 ()message2 ()

Ludovic Apvrille – TTool Training - 2004. Slide #43

Time

Basic Syntax (Cont.)

Object1

Object1

Object2

Object2

Object1

Object1

Object2

Object2

message1 ()message1 ()

message2 ()message2 () message2 ()message2 ()

message1 ()message1 ()

=

Ludovic Apvrille – TTool Training - 2004. Slide #44

message2 ()message2 () message2 ()message2 ()=

Association

� Association name

� Association with navigability

Client Product
purchase

Ludovic Apvrille – TTool Training - 2004. Slide #45

� Association with navigability

Student

Student

University

University
studyIn

studyIn

University

University

Student

Student

admits

 admits

Example: At Class Diagram Level

package example1Class Diagram {1/1}package example1Class Diagram {1/1}

<<interface>>

toCar

startCar ()
stopCar ()
gearUp()
gearDown ()
turnRight ()

<<interface>>

toCar

startCar ()
stopCar ()
gearUp()
gearDown ()
turnRight ()

<<interface>>

fromCar

failure(Integer)

<<interface>>

fromCar

failure(Integer)

Ludovic Apvrille – TTool Training - 2004. Slide #46

turnRight ()
turnLeft ()
turnRight ()
turnLeft ()

CarSystem

CarSystem

Car

Car

Driver

Driver

c

1

c

1

d

1

d

1

p1p1

toCartoCar

fromCarfromCar

p2p2

fromCarfromCar toCartoCar

Example: At Composite Structure Diagram
Level

active class CarSystemArchitecture Diagram {1/1}active class CarSystemArchitecture Diagram {1/1}

toCartoCar fromCarfromCar

Ludovic Apvrille – TTool Training - 2004. Slide #47

c : Car[1]

c : Car[1]

d : Driver[1]

d : Driver[1]
p1p1

fromCarfromCar
p2p2

toCartoCar

Connector

Example of State Machine Diagrams

LampOffLampOff

Start state

States

Ludovic Apvrille – TTool Training - 2004. Slide #48

lampOnlampOn

on()on() off()off()

Trigger

Activity Diagrams

Ludovic Apvrille – TTool Training - 2004. Slide #49

