
TTool
ttool.telecom-paristech.fr

SysML-Sec Tutorial

Document Manager Contributors Checked by
Name Ludovic APVRILLE

Ludovic APVRILLE Ludovic APVRILLE
Contact ludovic.apvrille@telecom-

paristech.fr
Date November 14, 2023

Page 1

ttool.telecom-paristech.fr

Contents
1 Preface 3

1.1 Table of Versions . 3
1.2 Table of References and Applicable Documents 3
1.3 Acronyms and glossary . 3
1.4 Summary . 3

2 Configuration 4
2.1 TTool configuration . 4
2.2 External tools . 4

3 Getting started with a toy example 5
3.1 Getting the example . 5
3.2 Understanding the model . 5
3.3 Security requirements . 5
3.4 Functional Model (version 1) . 6
3.5 Architecture and Mapping Models (version 1) 7
3.6 Attack Tree Model . 7
3.7 Implementing security countermeasures 9

3.7.1 Security verification . 9
3.7.2 Countermeasure 1: Secure Bus . 9
3.7.3 Countermeasure 2: Secure Functions 9

3.8 Automatic Security Generation . 14
3.8.1 Adding Security Operators . 14
3.8.2 Adding Hardware Security Modules 17
3.8.3 Mapping Keys . 18

3.9 Designing security protocols . 18

Page 2

1 Preface

1.1 Table of Versions

Version Date Description & Rationale of Modifications Sections
Modified

1.0 April 3rd,
2018

First draft

1.2 Table of References and Applicable Documents

Reference Title & Edition Author or
Editor

Year

1.3 Acronyms and glossary

Term Description

1.4 Summary
This document describes how to use SysML-Sec using simple examples1. In particular, it
covers requirements, attack trees, HW/SW partitioning and software design.

1This document has been started in the scope of the AQUAS european project

Page 3

2 Configuration

2.1 TTool configuration
At first, if not already configured2, you must open the configuration file of TTool. The
default file is located in:

TTool/bin/config.xml

Open your configuration file, and add the following lines accordingly with your TTool and
ProVerif installation:

• Directory in which formal specifications for security proofs are generated:

<ProVerifCodeDirectory data="../proverif/" />

• Path to the proverif executable file:

<ProVerifVerifierPath data="/opt/proverif/proverif" />

• Host on which the proof will be started (for example, you could execute this proof on
a dedicated machine if the "ProVerifCodeDirectory" is reachable from that dedicated
machine):

<ProVerifVerifierHost data="localhost" />

2.2 External tools
The configuration for the DIPLODOCUS simulator assumes that a C compiler, referenced
by the provided Makefile (default = "gcc"3) is installed on your machine, as well as the
POSIX-1 librairies. Also, a Makefile utility must be installed (e.g., "GNU make"4).

2Your version of TTool should be already configured
3https://gcc.gnu.org/
4https://www.gnu.org/software/make/

Page 4

https://gcc.gnu.org/
https://www.gnu.org/software/make/

3 Getting started with a toy example
This very first example explains how to use the main capabilities of SysML-Sec.

3.1 Getting the example
Be sure to get the latest version of TTool including the remote loading of models (March
2018 and after). Do: File, Open from TTool repository, and select "SysMLSecTutorial.xml".

3.2 Understanding the model
The first tab of the model presents an overview of the SysML-Sec methodology (see Figure
1). Each stage of the method is represented with a rectangle that contains a link to the
corresponding diagrams. All other tabs correspond to the diagrams of the model.

Req and attacks

SW Design

SW/HW Partitioning

Assumptions

Requirements

SecurityRequirements

Attacks

RetrieveData uppsimu

Functional view

NonSecureFV fvtmllotupp
SecureFV fvtmllotuppsim-trace

Architecture view

NonSecureArchitectureWithNonSecureFV
SecureArchitectureWithNonSecureFV

Mapping

NonSecureArchitectureWithNonSecureFV sim-animsim-trace
SecureArchitectureWithNonSecureFV sim-animsim-tracetmap

Communication pattern

Analysis

Design

SecurityProtocolDesign invproverifuppsimu

Prototyping

Properties

Figure 1: The first diagram represents the SysML-Sec method. Each stage of the method is
represented by a rectangle that contains a link to all diagrams of the corresponding stage.

3.3 Security requirements
Security requirements are captured with a SysML requirement diagram that is extended in
the following ways:

1. Requirements can be tagged as "Functional", "Non Functional", "Privacy", "Confiden-
tiality", "Non Repudiation", "Controlled Access", "Availability", "Immunity", "Data
Origin Authenticity", "Freshness", "Business", "Stakeholder Need", "Other"

2. Requirements have a risk attribute (low, medium, high).

3. References to other diagram elements can be added and linked to requirements with
a "satisfy" relation. "elt satifies req" means that elt is part of the mechanisms used to
satisfy the referenced requirement.

The requirement diagram of Figure 2 shows a confidentiality requirements that states
that all functional communication paths should be confidential.

Page 5

<<Requirement>>
CommunicationSecurity

ID=0
Text="The data exchanged between functional tasks
must be confidential"
Kind="Confidentiality"
Risk="Medium"
Reference elements=""

Figure 2: Security requirements (version #1)

3.4 Functional Model (version 1)
The functional model is built upon the merge of a SysML Block Definition Diagram and
a SysML Internal Block Diagram, see Figure 3. The functional view contains two blocks
: T1 and T2. The functional behavior of T1 and T2 is captured with Activity diagrams, as
displayed on the left and right of Figure 3. Basically, T1 writes one data sample, and T2
reads one data sample.

chl
comm(1)

T1

comm
???

T2

comm

comm
chl
comm(1)

Figure 3: Functional View (version #1)

As shown on the block diagram, T1 and T2 are connected with a data communication
channel. Since this communication channel must be secure (see Figure 2), we can now
enrich the Requirement Diagram with a new security requirement connected to the initial
security requirement (see Figure 4)

<<Requirement>>
CommunicationSecurity

ID=0
Text="The data exchanged between functional tasks
must be confidential"
Kind="Confidentiality"
Risk="Medium"
Reference elements=""

<<Requirement>>
ConfidentialityBetweenT1andT2

ID=1
Text=""
Kind="Confidentiality"
Risk="Medium"
Reference elements="Attack: RetrieveconfidentialData"

<<refine>>

Figure 4: Security requirements (version #2)

We also enrich the communication channel comm between T1 and T2 with a confiden-
tiality property, as shown by the grey lock with the question marks just next to the port of
comm in T1 (Figure 3).

Page 6

3.5 Architecture and Mapping Models (version 1)
A simple architecture model and mapping is shown in Figure 5. T1 and T2 are mapped on
CPU1 and CPU2, respectively. The channel between T1 and T2 is mapped on "MainBus"
and on "MainMemory".

<<CPURR>>
CPU1

NonSecureFV::T1

<<CPURR>>
CPU2

NonSecureFV::T2

<<BUS-RR>>
MainBus

NonSecureFV::comm

channel

<<MEMORY>>
MainMemory

NonSecureFV::comm

channel

Figure 5: Mapping Model (version #1)

3.6 Attack Tree Model
We can now capture potential attacks on this system in an attack tree model. However,
SysML doesn’t propose any way to capture fault or attack trees. TTool thus proposes relying
on SysML parametric diagrams in order to capture attacks (or faults).

Figure 6: Attack Tree Model

The attack tree of Figure 6 contains a root attack: "RetrieveConfidentialData". This root
attack is possible if and only if the attacker first connects to the bus (let’s call this attack
att1), and then reads (and interprets) a data on the bus (att2). Making either att1 or att2 not
possible in our system would be sufficient to ensure that the root attack is not possible. This
is obvious in our attack tree, but this is not always the case, such as for larger systems with
complex logical combinations of attack steps. Thus, TTool proposes a way to investigate if
a given attack is still possible in the system directly from attack trees. Let’s try together:

Page 7

1. Right click on the root attack, and click on "Select for Reachability/Liveness".

2. Let’s now see if the root attack is reachable. For this, check the syntax of the diagram,
and click on the "Safety verification (internal tool)" icon. Then, select "Reachability
of selected states" and click on start. Close the window. You diagram should be
annotated with a green "R", as shown on Figure 7.

3. Let’s make att1 or att2 not feasible. For this, you can right click on e.g. att1 and
select "Disable". If an attack is disabled, it probably means that a countermeasure
has been used. Thus, countermeasure blocks can be linked to attacks. In the case of
att1, the countermeasure is to make the bus private (e.g., make it internal to a chip
if the attacker has no way to investigate a bus within a chip). For att2, a common
countermeasure is to use security protocols relying on ciphering algorithms. For now,
we assume that only att1 is disabled. Run the verification process again. After this
verification process, you should obtain a red "R", meaning that the root attack is no
longer feasible (see Figure 8)

Figure 7: Attack Tree Model after formal verification with no attack steps disabled

Figure 8: Attack Tree Model after formal verification with attack steps disabled by counter-
measures

Page 8

3.7 Implementing security countermeasures
3.7.1 Security verification

Before implementing security countermeasures in the mapping model, this document ex-
plains how to perform formal security verification. Again, Figure 3 contains a security
property on channel "comm" to verify that the latter is confidential. Let’s now prove this
confidentiality property on the first system version (see Figure 5):

1. Check the syntax of "NonSecureArchitectureWithNonSecureFV" diagram.

2. Click on the "SecurityVerification (ProVerif)" icon. A dialog window should open:
click on start. The results should be as shown in Figure 9.

3. The result of the verification is displayed in the lower part of Figure 9. There are two
results:

• The comm channel is NOT confidential, which proves that the confidentiality
requirement is NOT satisfied

• The read and write actions in T2 and T1 are reachable. This result is important in
the case the property is satisfied. Indeed, if none of these actions were reachable,
the channel would be confidential since there would be no exchange of data on
this channel.

4. Since comm is not confidential, TTool can draw an attack trace that shows how the
attacker manages to retrieve the data. Right click on the non satisfied authenticity,
and select "show trace" (see Figure 10). This (obvious) trace explains that T1 directly
send a data to the attacker since T1 writes the data on a public bus.

5. The functional view is annotated with the verification results, as shown on Figure 11.

3.7.2 Countermeasure 1: Secure Bus

As seen before, a first countermeasure is to use a secure bus, which is called "private"
in TTool. Thus, the bus in the second mapping (called "SecureArchitectureWithNonSe-
cureFV") is private. You can see this with the green shield icon on the bus. A double-click
on this bus makes it possible to change this parameter (public, private).

Try to run the security verification of this second system. You should observe that the
confidentiality property is now verified.

3.7.3 Countermeasure 2: Secure Functions

A second countermeasure consists in adding security mechanisms to the two functions T1
and T2. TTool offers cryptographic configurations to add security mechanisms to the be-
haviour of blocks (See our Modelsward 2017 paper). Basically, a cryptographic configu-
ration specifies the type of security mechanism (symmetric cipher, hash, key manipulation,
nonce, etc.) and its performance impact in terms of complexity operations by sample.

The modified activity diagrams of T1 and T2 are given in Figure 13. Note that only the
activity diagrams have been modified with regards to previous version.

If you double-click on the SE operator of T1, the following windows should open (see
Figure 14). This dialog window contains the following fields:

Page 9

Figure 9: Security verification dialog window

Figure 10: Attack trace

chl
comm(1)

T1

comm
NonSecureArchitectureWithNonSecureFV

T2

comm

comm
chl
comm(1)

Figure 11: Functional View annotated with security verification

Page 10

<<CPURR>>
CPU1

NonSecureFV::T1

<<CPURR>>
CPU2

NonSecureFV::T2

<<BUS-RR>>
MainBus

NonSecureFV::comm

channel

<<MEMORY>>
MainMemory

NonSecureFV::comm

channel

Figure 12: Secure Architecture due to a private bus

chl
comm(1)

sec:Cipherdata

sec:Cipherdata

T1

comm
???

T2

comm

comm

chl
comm(1)

sec:Cipherdata

sec:Cipherdata

Figure 13: Functional view updated with cryptographic configurations

Page 11

• Name of the configuration. This name is useful to reference a given cryptographic
configuration when writing/reading data. For instance, the write operator on comm in
T1 uses the Cipherdata cryptographic configuration.

• The type of the cryptographic configuration: Symmetric, Asymmetric, MAC, Hash,
Nonce, Advanced. In our case, a symmetric encryption is selected.

• The complexity, in terms of integer operations, of the selected operation

• The use of cryptographic material: keys, nonces and precise algorithm (AES, etc.)

Channels can be tagged with cryptographic configurations on the Security tab, with the
options shown in Figure 15. By default, channels tagged with cryptographic configurations
will send the data in their encrypted form. However, with the use of Hardware Security
Modules described below, it may be necessary to send the unencrypted data to the HSM to
encrypt, where ’Encrypted form’ needs to be marked ’No’. In addition, if a task is to be an
attacker task (see our paper in Modelsward 2018), channels can also be marked as ‘attacker
channels’. If a channel sends data to be secured in the unencrypted form, on the activity
diagram, the Cryptographic Configuration name is displayed in red.

Figure 14: Cryptographic configuration dialog window

Figure 15: Channel security options dialog window

Let’s now consider a third mapping (named "NonSecureArchitectureWithSecureFV")
which basically consists in mapping the secure tasks to the non secure architecture (i.e., the

Page 12

T1

comm
NonSecureArchitectureWithSecureFV

T2

comm

comm

Figure 16: Verification result in the case of a non secure architecture but with secure func-
tions

one with the public bus). The result of the security verification of this system is given in
Figure 16. The confidentiality property is now verified.

Unfortunately, security mechanisms impact the performance of the system. TTool makes
it possible to evaluate the performance of two different mappings,e.g. the one with no secu-
rity (version 1), and the one with security mechanisms (version 3). To do this, TTool relies
on the DIPLODOCUS simulator5.

Without taking into account penalties of the hardware platform (e.g. cache miss, task
switching time, boot time, etc.), simulation takes 20 cycles in the case of the non secure
system (see Figure 17), and 220 (20 cycles + 100 cycles for ciphering + 100 cycles for
deciphering) in the case of the secure mechanisms added to tasks(see Figure 18).

Figure 17: Simulation of non secure application mapped on the non secure architecture

5see the tutorial on DIPLODOCUS to learn how to use the DIPLODOCUS simulator: https://ttool.telecom-
paristech.fr/diplodocus.html

Page 13

Figure 18: Excerpt of the simulation of the secure application mapped on the non secure
architecture

3.8 Automatic Security Generation
Given security requirements and an unsecured model, our toolkit magically adds security
elements. It can 1) add the security operators to a functional view, optionally with an added
HSM performing all security operations, and 2) Automatically map keys securely. See the
thesis of Letitia Li, ‘Safe and Secure Model-Driven Design for Embedded Systems’ for the
detailed algorithms on how to add security.

First, each security-critical channel should be marked with whether the data across it
should be checked for Confidentiality or Authenticity. It is assumed that the security prop-
erties to be checked are the ones that should be ensured for each channel.

3.8.1 Adding Security Operators

When the option to add security operators is selected, there are multiple options of the type
of security operators to be added. The user should select if confidentiality, weak authen-
ticity, and/or strong authenticity should be ensured for the model. For example, if the user
only wishes to add operators to ensure confidentiality, then the toolkit will ignore the re-
quirements on authenticity and only add the encryption operators to channels marked with
the security annotation indicating that the data on them must be confidential.

In addition, for the operators being added, estimated times to perform encryption, de-
cryption, calculate a MAC, etc, and the overhead, can be manually set in lieu of using the
default options.

For example, using the insecure architecture and functional model with authenticity
check from Figure 20 and 5, if the communication channel is marked that it should be
authentic, and if we choose to ensure weak authenticity only, then the toolkit generates the
functional model shown in Figure 21. The Message Authentication Code concatenated onto
the message can only be calculated with the given key and message, and if T2 detects that
they do not match, then it discards the message as it was not an authentic message sent by
T1.

If instead we chose to add weak and strong authenticity, then the tasks should exchange
a nonce to avoid replay attacks, and the functional model in Figure 22 is generated.

Page 14

Figure 19: Window for Automatic Generation of Security

Page 15

chl
comm(1)

T1

comm

T2

comm

SW
comm

T1

comm

T2

comm

SW
comm chl

comm(1)

Figure 20: Functional View with authenticity check

chl
comm(1)

sec:autoEncrypt_comm

sec:autoEncrypt_comm

T1

comm

T2

comm

autoEncrypt_comm
SW

comm

chl
comm(1)

sec:autoEncrypt_comm

sec:autoEncrypt_comm

Figure 21: Functional view with automatically generated security operators to ensure weak
authenticity

chl
comm(1)

sec:autoEncrypt_comm

chl
nonceChT2_T1(1)

sec:nonce_T2_T1

sec:autoEncrypt_comm
nonce:nonce_T2_T1

T1

comm

T2

comm

autoEncrypt_comm
SW

comm

nonceChT2_T1

chl
comm(1)

sec:autoEncrypt_comm

sec:nonce_T2_T1

chl
nonceChT2_T1(1)

sec:nonce_T2_T1

sec:autoEncrypt_comm

Figure 22: Functional view with automatically generated security operators to ensure strong
authenticity

Page 16

3.8.2 Adding Hardware Security Modules

For automatic security generation, there is also an option to add HSMs to perform all the
security operators intead. Our toolkit can automatically add HSMs to designated tasks,
including making all of the modifications to the diagrams relating to sending the data to the
HSM, generating the HSM’s activity diagram, etc. A single Hardware Security Module is
added to each processor which executes at least one of the designated tasks. If multiple tasks
mapped to a single CPU are designated to have a HSM added to them, then only a single
HSM will be added.

For each HSM to be added to perform security operations for one or more tasks, first,
the architectural diagram is modified to add a Hardware Accelerator and memory, with a
connecting private bus.

Next, each task is modified, so that before each instance of sending a message which
should be secure, the task first issues a request with the index of the channel (in the case
of multiple channels to secure), and sends the data to the HSM. The HSM then performs
the security operations, and returns the secured message to the task, which then sends the
secured message to the receiving task. When a task receives data to be decrypted, it similarly
sends the messages to the HSM, which then decrypts it and sends the message back, and
which point the receiving task can understand the contents of the message.

For example, using the model in our example, chose to ensure confidentiality, and add
a HSM to each task. A new HSM task is added for each HSM in the Functional model as
shown in Figure 23, and a secure bus, memory, and Hardware Accelerator are added for each
CPU on the Architecture/Mapping model as shown in Figure 24. Figure 25 shows how the
activity diagram of task t1 is modified to send communications to the HSM to be encrypted
the activity diagram of the HSM.

T1

retData_comm_T1

data_comm_T1

startHSM_CPU1

comm???

T2

retData_comm_T2

data_comm_T2

startHSM_CPU2

comm
comm

HSM_CPU2

+ channelIndex = 0 : Natural;

retData_comm_T2

data_comm_T2

startHSM_CPU2startHSM_CPU2

data_comm_T2

retData_comm_T2

HSM_CPU1

+ channelIndex = 0 : Natural;

retData_comm_T1

data_comm_T1

startHSM_CPU1 startHSM_CPU1

data_comm_T1

retData_comm_T1

T1

retData_comm_T1

data_comm_T1

startHSM_CPU1

comm???

T2

retData_comm_T2

data_comm_T2

startHSM_CPU2

comm
comm

HSM_CPU2

+ channelIndex = 0 : Natural;

retData_comm_T2

data_comm_T2

startHSM_CPU2startHSM_CPU2

data_comm_T2

retData_comm_T2

HSM_CPU1

+ channelIndex = 0 : Natural;

retData_comm_T1

data_comm_T1

startHSM_CPU1 startHSM_CPU1

data_comm_T1

retData_comm_T1

Figure 23: Functional Model with added Hardware Security Module Tasks

<<CPURR>>
CPU1

NonSecureFV_enc::T1

<<CPURR>>
CPU2

NonSecureFV_enc::T2

<<BUS-RR>>
MainBus

NonSecureFV_enc::comm

channel

<<MEMORY>>
MainMemory

NonSecureFV_enc::comm

channel

<<BUS-RR>>
HSMBus_CPU2

<<MEMORY>>
HSMMemory_CPU1

autoEncrypt_comm

key

<<HWA>>
HSM_CPU1

NonSecureFV_enc::HSM_CPU1

<<BUS-RR>>
HSMBus_CPU1

<<MEMORY>>
HSMMemory_CPU2

autoEncrypt_comm

key

<<HWA>>
HSM_CPU2

NonSecureFV_enc::HSM_CPU2

Figure 24: Architecture Model with added Hardware Security Modules

Page 17

chl
comm(1)

sec:hsmSec

req
startHSM_CPU1(0)

chl
data_comm_T1(1)

chl
retData_comm_T1(1)

sec:hsmS

chl
comm(1)

sec:hsmSec

req
startHSM_CPU1(0)

chl
data_comm_T1(1)

chl
retData_comm_T1(1)

sec:hsmS

getReqArg(channelIndex)

[channelIndex==0]

chl
data_comm_T1(1)

chl
retData_comm_T1(1)

sec:hsmSec_comm

sec:hsmSec_comm

getReqArg(channelIndex)

[channelIndex==0]

chl
data_comm_T1(1)

chl
retData_comm_T1(1)

sec:hsmSec_comm

sec:hsmSec_comm

Figure 25: Modified Activity Diagram of T1 and HSM

3.8.3 Mapping Keys

With multiple Cryptographic Configurations, it may become tedious to map all of the keys
to memory. Our toolkit therefore can find every Cryptographic Configuration used by a task,
and then, depending on the type of the Cryptographic Configuration, map each applicable
key to a memory that the task can securely access. For Cryptographic Configurations of
type symmetric encryption or MAC, both the sending and receiving task will need to be able
to access the key. For asymmetric encryption, however, all the sending tasks will need the
public key while only the receiving task will need to access the private key.

At every security generation, keys are automatically generated and mapped securely.
There is also the option to add keys alone after completing a design by hand.

If a key is sent along a bus accessible to an attacker, then the key would be known to
the attacker, so we wish to avoid sending keys along public buses. For each task which
needs the key, the algorithm searches for securely accessible memories from the processor
to which it is mapped. The algorithm traverses all possible private buses and bridges using
breadth-first search, until it finds a memory. The key is then mapped to that memory. If
all possible secure paths are searched and no memories are found, then a warning is issued
saying it is impossible to map keys for that task.

For example, for the automatically secured model in Figure 21, the keys for autoEn-
crypt_comm are mapped as shown in Figure 26, where there is a secure path to the memory.
If they keys were mapped to MainMemory, then the attacker could recover the key when it
was read over the public bus MainBus.

3.9 Designing security protocols
During the HW/SW partitioning stage, security mechanisms have been modeled at a high
level of abstraction, mostly to place them correctly in the system, and to evaluate their
impact on the system performance. During the software design stage, security protocols can
be designed in a more precise way.

Page 18

<<CPURR>>
CPU1

NonSecureFV_enc::T1

<<CPURR>>
CPU2

NonSecureFV_enc::T2

<<BUS-RR>>
MainBus

NonSecureFV_enc::comm

channel

<<MEMORY>>
MainMemory

NonSecureFV_enc::comm

channel

<<BUS-RR>>
Bus1

<<MEMORY>>
Memory1

autoEncrypt_comm

key

<<BUS-RR>>
Bus2

<<MEMORY>>
Memory2

autoEncrypt_comm

key

Figure 26: Mapping model with mapped keys

A software design contains a block diagram (see Figure 27) as well as a state machine
for each task block (see Figure 28).

The block diagram contains a main block ("System") with two sub blocks ("T1" and
"T2"). These tasks correspond to the same tasks modeled in the HW/SW Partitioning phase
at a higher level of abstraction. Two other blocks "Key" and "Messages" are used to de-
fine custom data types. T1 and T2 are cryptoblocks, i.e. they define default cryptographic
methods e.g. encrypt, decrypt, hash, mac, message manipulation (concat, cut), etc. Last, a
pragma:

• links cryptographic keys of T1 and T2. This key "sk" is system-wide, which means
that it is shared once for all protocol sessions.

• gives a security property to check: the value of the attribute "secretData" of "T1" must
remain confidential.

<<block>>

System

~ in chin(Message msg)
~ out chout(Message msg)

<<cryptoblock>>

T2

- m : Message;
- m2 : Message;
- sk : Key;
- receivedData : int;

- Message encrypt(Mes...

<<cryptoblock>>

T1

- secretData : int;
- m : Message;
- m1 : Message;
- sk : Key;

- Message encrypt(Message msg, Key k)

<<datatype>>
Key

- data : int;

<<datatype>>
Message

- data : int;

Model Pragmas
#InitialSystemKnowledge T1.sk T2.sk

Security Property
#Confidentiality T1.secretData

Figure 27: Design of a security protocol

The security formal verification can be performed from these diagrams. Just like for
HW/SW partitioning models, both security properties and the reachability of states can be

Page 19

makingMessage

sendingMessage

chout(m1)

beforeFinish

m.data = secretData
m1 = sencrypt(m, sk)

waitingForMessage

chin(m2)

messageDecrypt

SecretDataReceived

messageDecrypted

m = sdecrypt(m2, sk)

receivedData = m.data

Figure 28: State machines of T1 (on the left) and T2 (on the right)

studied, and results are back-traced to the diagrams with e.g. green locks when the property
is satisfied (see Figure 29).

<<block>>

System

~ in chin(Message msg)
~ out chout(Message msg)

<<cryptoblock>>

T2

- m : Message;
- m2 : Message;
- sk : Key;
- receivedData : int;

- Message encrypt(Mes...

<<cryptoblock>>

T1

- secretData : int;
- m : Message;
- m1 : Message;
- sk : Key;

- Message encrypt(Message msg, Key k)

<<datatype>>
Key

- data : int;

<<datatype>>
Message

- data : int;

Model Pragmas
#InitialSystemKnowledge T1.sk T2.sk

Security Property
#Confidentiality T1.secretData

Figure 29: Result of the security verification

Page 20

	Preface
	Table of Versions
	Table of References and Applicable Documents
	Acronyms and glossary
	Summary

	Configuration
	TTool configuration
	External tools

	Getting started with a toy example
	Getting the example
	Understanding the model
	Security requirements
	Functional Model (version 1)
	Architecture and Mapping Models (version 1)
	Attack Tree Model
	Implementing security countermeasures
	Security verification
	Countermeasure 1: Secure Bus
	Countermeasure 2: Secure Functions

	Automatic Security Generation
	Adding Security Operators
	Adding Hardware Security Modules
	Mapping Keys

	Designing security protocols

